If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15X^2-26X+3=0
a = 15; b = -26; c = +3;
Δ = b2-4ac
Δ = -262-4·15·3
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-4\sqrt{31}}{2*15}=\frac{26-4\sqrt{31}}{30} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+4\sqrt{31}}{2*15}=\frac{26+4\sqrt{31}}{30} $
| x+6.61=4.19 | | 6x=132. | | 1/4(7/9-4x)-8/9=2/9 | | 4n-1-5n=-n+9 | | 5(w+4103)=6104 | | 4n-1-5n=-10-n | | 6k-48=78 | | 200+50m=150m | | -21/4u+2(3/8u-9)=5/2 | | 1/6+500m=3000 | | 9m-4+6m=14m-14 | | -2.4=-0.8u+0.2u | | 3’.9+t=4.5 | | 19x-13+x=-153 | | 1/4-1/3=h | | 10x+14x+13=-6x-1 | | 45/8u+2-9=5/2 | | 40-6x=-8(1+6x)-6x | | 35.4+-50=x | | 10/3p+3-8=-10 | | 3x=6+3x | | 5n+1n=0 | | 1×3x=13 | | 34+3a=-7(1+a) | | 35.4+-59.9=x | | 22=9x+x-8 | | -8x-2=4x-13 | | (k/3)+4-(5k)=-2k | | y-11=11 | | 5x-20=60+4x | | 18m-2=12m-0.5 | | x+1.03x=78.28 |